Optimal Data Acquisition and Height Retrieval in Repeat-Track Geosynchronous SAR Interferometry
نویسندگان
چکیده
Geosynchronous synthetic aperture radar (GEO SAR) will move in a high orbit of ~36,000 km with a long integration time of hundreds of seconds. It is obviously impacted by orbital perturbations and the Earth’s rotation, which can give rise to un-parallel repeated tracks and induce a squint-looking angle in the repeat-track SAR interferometry (InSAR). Thus, the traditional data acquisition method using in the zero-Doppler centroid (ZDC) configuration to generate the GEO InSAR pair will bring about the obvious rotation-induced decorrelation. Moreover, the conventional height retrieval model with the broadside mode imaging geometry and the approximate expression of the interferometric baseline will induce large height and localization errors in the GEO InSAR processing. In this paper, a novel data acquisition method is firstly presented based on a criterion of optimal minimal rotational-induced decorrelation (OMRD). It can significantly improve the coherence of the InSAR pair. Then, considering the localization equations in the squint-looking mode and the accurate expression of the interferometric baseline, a modified GEO InSAR height retrieval model is proposed to mitigate the height and localization errors induced by the conventional model. Finally, computer simulations are carried out for the verification of the proposed methods. In a typical inclined GEO InSAR configuration, the averaged total correlation coefficient increases more than 0.4, and height errors of hundreds of meters and localization errors of more than 10 degrees are removed.
منابع مشابه
Impacts of Temporal-Spatial Variant Background Ionosphere on Repeat-Track GEO D-InSAR System
An L band geosynchronous synthetic aperture radar (GEO SAR) differential interferometry system (D-InSAR) will be obviously impacted by the background ionosphere, which will give rise to relative image shifts and decorrelations of the SAR interferometry (InSAR) pair, and induce the interferometric phase screen errors in interferograms. However, the background ionosphere varies within the long in...
متن کاملForest Canopy Height Mapping from Dual-wavelength Sar Interferometry
The CORSAR project (Carbon Observation and Retrieval from SAR), which is supported by the UK Natural Environment Research Council (NERC), has the objective to examine polarimetric decomposition and polarimetric SAR interferometry methods for estimating the effects of canopy structure in biomass-backscatter relationships. Forest canopy height is a useful input parameter to yield models, carbon c...
متن کاملOn forest height retrieval from spaceborne X-band interferometric SAR images under variable seasonal conditions
This paper discusses the possibility to use spaceborne X-band radar interferometry for forest height mapping. In our previous works was shown that airborne X-band SAR interferometry combined with accurate ground elevation model can provide good estimates of boreal forest height. In order to apply this technique to spaceborne SAR images, temporal variability of the scattering and lower signal to...
متن کاملSnow Mass Retrieval by Means of Sar Interferometry
The feasibility for retrieving the mass of snow on ground (the snow water equivalent, SWE) by means of repeat-pass SAR interferometry has been investigated. Because the SAR signal of ground covered by dry snow is dominated by backscatter from the snow/ground interface, the differential phase shift due to propagation in the snow can be directly related to SWE. The factors of relevance for cohere...
متن کاملMaximum Likelihood Multi-Baseline SAR Interferometry
We propose a technique to provide interferometry by combining multiple images of the same area. This technique exploits all the images jointly and performs an optimal spectral shift pre-processing to remove most of the decorrelation for distributed targets. It’s applications are mainly for DEM generation at centimetric accuracy, and for differential interferometry. The major requirement is that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 7 شماره
صفحات -
تاریخ انتشار 2015